Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Plants, People, Planet ; 5(3):317-323, 2023.
Article in English | ProQuest Central | ID: covidwho-2301275

ABSTRACT

Conflicts across the globe affect food security and also have a heavy toll on food safety. Many of the areas affected by conflict are breadbaskets for multiple countries. When the production of staple crops is compromised by diverse conflicts, it becomes necessary to grow them somewhere else to satisfy local, regional, and/or international requirements. However, if that production is done in tropical and subtropical zones, it must be done incorporating strategies to prevent mycotoxin contamination, which has negative health, social, and economic impacts. Otherwise, increased production of susceptible crops in mycotoxin-prone areas may augment the already occurring negative impacts, which are severe in the global south.

2.
Viruses ; 15(2)2023 01 25.
Article in English | MEDLINE | ID: covidwho-2216967

ABSTRACT

Viruses contribute significantly to the global decline of honey bee populations. One way to limit the impact of such viruses is the introduction of natural antiviral compounds from fungi as a component of honey bee diets. Therefore, we examined the effect of crude organic extracts from seven strains of the fungal genus Talaromyces in honey bee diets under laboratory conditions. The strains were isolated from bee bread prepared by honey bees infected with chronic bee paralysis virus (CBPV). The antiviral effect of the extracts was also quantified in vitro using mammalian cells as a model system. We found that three extracts (from strains B13, B18 and B30) mitigated CBPV infections and increased the survival rate of bees, whereas other extracts had no effect (B11 and B49) or were independently toxic (B69 and B195). Extract B18 inhibited the replication of feline calicivirus and feline coronavirus (FCoV) in mammalian cells, whereas extracts B18 and B195 reduced the infectivity of FCoV by ~90% and 99%, respectively. Our results show that nonpathogenic fungi (and their products in food stores) offer an underexplored source of compounds that promote disease resistance in honey bees.


Subject(s)
Ascomycota , Coronavirus, Feline , RNA Viruses , Talaromyces , Cats , Bees , Animals , Antiviral Agents/pharmacology , Paralysis , Mammals
3.
Front Vet Sci ; 9: 956814, 2022.
Article in English | MEDLINE | ID: covidwho-2080311

ABSTRACT

Animal feed can easily be infected with molds during production and storage processes, and this can lead to the production of secondary metabolites, such as mycotoxins, which eventually threaten human and animal health. Furthermore, livestock production is also not free from viral infections. Under these conditions, the essential trace element, selenium (Se), can confer various biological benefits to humans and animals, especially due to its anticancer, antiviral, and antioxidant properties, as well as its ability to regulate immune responses. This article reviews the latest literature on the antagonistic effects of Se on mycotoxin toxicity and viral infections in animals. We outlined the systemic toxicity of mycotoxins and the primary mechanisms of mycotoxin-induced toxicity in this analysis. In addition, we pay close attention to how mycotoxins and viral infections in livestock interact. The use of Se supplementation against mycotoxin-induced toxicity and cattle viral infection was the topic of our final discussion. The coronavirus disease 2019 (COVID-19) pandemic, which is currently causing a health catastrophe, has altered our perspective on health concerns to one that is more holistic and increasingly embraces the One Health Concept, which acknowledges the interdependence of humans, animals, and the environment. In light of this, we have made an effort to present a thorough and wide-ranging background on the protective functions of selenium in successfully reducing mycotoxin toxicity and livestock viral infection. It concluded that mycotoxins could be systemically harmful and pose a severe risk to human and animal health. On the contrary, animal mycotoxins and viral illnesses have a close connection. Last but not least, these findings show that the interaction between Se status and host response to mycotoxins and cattle virus infection is crucial.

4.
Foods ; 11(17)2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2023330

ABSTRACT

South Africa (SA) is a leading exporter of maize in Africa. The commercial maize farming sector contributes to about 85% of the overall maize produced. More than 33% of South Africa's population live in rural settlements, and their livelihoods depend entirely on subsistence farming. The subsistence farming system promotes fungal growth and mycotoxin production. This review aims to investigate the exposure levels of the rural population of South Africa to dietary mycotoxins contrary to several reports issued concerning the safety of South African maize. A systematic search was conducted using Google Scholar. Maize is a staple food in South Africa and consumption rates in rural and urban communities are different, for instance, intake may be 1-2 kg/person/day and 400 g/person/day, respectively. Commercial and subsistence maize farming techniques are different. There exist differences influencing the composition of mycotoxins in food commodities from both sectors. Depending on the levels of contamination, dietary exposure of South Africans to mycotoxins is evident in the high levels of fumonisins (FBs) that have been detected in SA home-grown maize. Other potential sources of exposure to mycotoxins, such as carryover effects from animal products and processed foods, were reviewed. The combined effects between FBs and aflatoxins (AFs) have been reported in humans/animals and should not be ignored, as sporadic breakouts of aflatoxicosis have been reported in South Africa. These reports are not a true representation of the entire country as reports from the subsistence-farming rural communities show high incidence of maize contaminated with both AFs and FBs. While commercial farmers and exporters have all the resources needed to perform laboratory analyses of maize products, the greater challenge in combatting mycotoxin exposure is encountered in rural communities with predominantly subsistence farming systems, where conventional food surveillance is lacking.

5.
Sarhad Journal of Agriculture ; 38(2):480-488, 2022.
Article in English | CAB Abstracts | ID: covidwho-2002723

ABSTRACT

Broiler population is one of the most important segments of livestock due to its significant contribution in white meat production. Infectious disease outbreaks adversely influence the production potential and consequently cause economic losses. Epidemiological data regarding magnitude of these disease outbreaks is of fundamental importance for planning of a comprehensive control strategy. With retrospective design, this study was conducted from January 2013 through December 2017 in order to assess the disease burden on broilers reared in different open type poultry houses. Out of total 658 commercial farms with capacity of 4221800 broilers, across Chakwal, a representative sample of 70 farms with capacity of 448000 broilers was randomly selected for collection and analysis of disease data. Five years' data of these randomly selected farms revealed highest (44.64%) crude morbidity during monsoon season followed by 23.92%, 22.12% and 17.49% for winter, spring and post-monsoon seasons respectively. The highest (14.90%) prevalence was recorded for new castle disease followed by infectious bursal disease (11.79%), pullorum disease (11.17%), colibacillosis (8.71%), infectious bronchitis (7.87%), inclusion body hepatitis (7.79%), chronic respiratory disease (7.67%), necrotic enteritis (6.48%), coccidiosis (6.09%), mycotoxicosis (5.43%), fowl cholera (4.74%), infectious coryza (4.41%), fowl typhoid (4.22%), omphalitis (3.71%) and hydropericardium syndrome (0.05%). Maximum share in crude morbidity was contributed by bacterial diseases with highest proportional morbidity of 48.68% followed by viral (40.32%), parasitic (5.80%) and fungal (5.20%) diseases. This epidemiological data represents true picture of study population and is a valuable tool for planning of prevention strategy and research priorities.

6.
Journal of Nutrition and Food Security ; 7(2):220-226, 2022.
Article in English | CAB Abstracts | ID: covidwho-1893504

ABSTRACT

Background: Breast milk provides the ideal nutrition for infants. It has a nearly perfect mix of vitamins, protein, and fat. Breastfeeding has many health benefits for both the mother and infant. Breast milk contains all the nutrients an infant needs in the first six months of life. The present study aimed to measure aflatoxin M1 (AFM1) levels in breast milk and identify nutritional and socio-demographic factors associated with AFM1 levels.

7.
Sel'skokhozyaistvennaya Biologiya ; 57(2):371-383, 2022.
Article in Russian | Scopus | ID: covidwho-1879686

ABSTRACT

Animal and human mycotoxicoses occur due to the ingestion of metabolites of toxicogenic microfungi. The effect increases in case of the co-ingestion of several mycotoxins, their mix with another ecotoxicants and biological agents. However, published research data only partially cover the nature of mixed mycotoxicoses in infectious diseases. This work shows for the first time the effect on pigs of the infection load of Clostridium perfringes and the combined effect of T-2 toxin, zearalenone, and deoxynivalenol in low doses. Our goal was to study the chronic form of combined mycotoxicosis in weaned pigs with a persistent infection in herd on the animal productivity, blood morpho-biochemical and immunological parameters, pathological changes in organs and tissues. Combined experimental mycotoxicosis with infectious load was modeled under the conditions of the vivarium complex (the Federal Center for Toxicological, Radiation and Biological Safety, 2018) on the weaning Large White piglets (Sus scrofa domesticus) divided into three groups 3 pigs each. Group I received no mycotoxins, group II received dietary T-2 toxin (70 µg/kg feed), group III received mixed dietary mycotoxins (DON 1000 µg/kg, ZEN 50 µg/kg and T-2 70 µg/kg). All animals were orally administered a suspension of Clostridium perfringes No. 392 type C (1½106 CFU/ml, 2 ml). On day 15, the animals were vaccinated intramuscularly in the posterior thigh with 1 ml of the associated vaccine against rota-, coronavirus and colorectal diarrhea of newborn piglets (FCTRB-VNIVI). Group I (control) was considered clinically healthy. Signs of intoxication, blood biochemical parameters (total protein, total bilirubin, glucose, malondialdehyde, alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase activity), blood morphology (counts of erythrocytes, leukocytes, the hemoglobin level) and immunological parameters (T- and B-lymphocytes, titer of antibodies to vaccine antigens) on day 10, 20 and 30. The antibody titers to the Escherichia coli vaccine strain were determined by the agglutination reaction, to the coronavirus vaccine antigen by the ELISA test using a Multiscan FC photometer (Thermo Scientific, USA), and to the rotavirus antigen by an indirect hemagglutination test. At the end of the experiment, pieces of organs were fixed in 10 % neutral formalin, followed by generally accepted pathomorphological processing for histological studies. Histopreparations were stained with hematoxylin and eosin. Feed contamination with mycotoxins combined with clostridiosis had an adverse effect on the clinical and immune status, blood morpho-biochemical parameters, and pathoanatomical patterns. The changes were more apparent in co-contamination with ecotoxicants. Average daily bodyweight gain in piglets of group II was lower by 20.5 % compared to the control (p ≥ 0.05), of group III by 39.2 % (p ≤ 0.05). In group III, by the end of the experiment, there was a decrease in the erythrocyte counts by 40 % (p ≤ 0.001), in the level of hemoglobin by 20 % (p ≤ 0.01), glucose by 57 % (p ≤ 0.001), and total protein by 13 % (p ≤ 0.05). The concentration of bilirubin increased 5.1-fold (p ≤ 0.001), the activity of alanine aminotransferase and aspartate aminotransferase 2.2- and 1.8-fold (p ≤ 0.001), respectively, the concentration of malondialdehyde 2.8-fold (p ≤ 0.001), the activity of alkaline phosphatase decrease by 41.5 % (p ≤ 0.001). Co-mycotoxicosis combined with an infectious load led to immunological changes. Titers of specific antibodies to rotavirus were 8 times lower, to coronavirus 6.4 times lower (p ≤ 0.05), to Escherichia 5 times lower (p ≤ 0.05) compared to the control. Marked pathological changes in the internal organs also occurred. Therefore, the co-mycotoxicosis due to T-2 toxin-, deoxynivalenol- and zearalenone-contaminated feed combined with the persistence of Clostridium perfringens, the causative agent of intestinal infection lead to suppression of immunological parameters (a decrease in the titer of specific protective ntibodies, the number of T- and B-lymphocytes), activation of lipid peroxidation, and pathological changes in tissues and organs of the piglets. © 2022 Russian Academy of Agricultural Sciences. All rights reserved.

8.
Toxins ; 14(5):307, 2022.
Article in English | ProQuest Central | ID: covidwho-1871659

ABSTRACT

Aflatoxin, a type of mycotoxin, is mostly produced by Aspergillus flavus and Aspergillus parasiticus. It is responsible for the loss of billions of dollars to the world economy, by contaminating different crops such as cotton, groundnut, maize, and chilies, and causing immense effects on the health of humans and animals. More than eighteen different types of aflatoxins have been reported to date, and among them, aflatoxins B1, B2, G1, and G2 are the most prevalent and lethal. Early detection of fungal infection plays a key role in the control of aflatoxin contamination. Therefore, different methods, including culture, chromatographic techniques, and molecular assays, are used to determine aflatoxin contamination in crops and food products. Many countries have set a maximum limit of aflatoxin contamination (2–20 ppb) in their food and agriculture commodities for human or animal consumption, and the use of different methods to combat this menace is essential. Fungal infection mostly takes place during the pre- and post-harvest stage of crops, and most of the methods to control aflatoxin are employed for the latter phase. Studies have shown that if correct measures are adopted during the crop development phase, aflatoxin contamination can be reduced by a significant level. Currently, the use of bio-pesticides is the intervention employed in many countries, whereby atoxigenic strains competitively reduce the burden of toxigenic strains in the field, thereby helping to mitigate this problem. This updated review on aflatoxins sheds light on the sources of contamination, and the on occurrence, impact, detection techniques, and management strategies, with a special emphasis on bio-pesticides to control aflatoxins.

9.
Toxins (Basel) ; 14(5)2022 05 16.
Article in English | MEDLINE | ID: covidwho-1855791

ABSTRACT

Cemeteries are potential environmental reservoirs of pathogenic microorganisms from organic matter decomposition. This study aimed to characterize the microbial contamination in three cemeteries, and more specifically in grave diggers' facilities. One active sampling method (impingement method) and several passive sampling methods (swabs, settled dust, settled dust filters and electrostatic dust cloths-EDC) were employed. The molecular detection of Aspergillus sections and SARS-CoV-2, as well as mycotoxin analysis, screening of azole resistance, and cytotoxicity measurement were also conducted. Total bacteria contamination was 80 CFU·m-2 in settled dust samples, reached 849 CFU·m-2 in EDC and 20,000 CFU·m-2 in swabs, and ranged from 5000 to 10,000 CFU·m-2 in filters. Gram-negative bacteria (VRBA) were only observed in in settled dust samples (2.00 × 105 CFU·m-2). Regarding Aspergillus sp., the highest counts were obtained in DG18 (18.38%) and it was not observed in azole-supplemented SDA media. SARS-CoV-2 and the targeted Aspergillus sections were not detected. Mycophenolic acid was detected in one settled dust sample. Cytotoxic effects were observed for 94.4% filters and 5.6% EDC in A549 lung epithelial cells, and for 50.0% filters and 5.6% EDC in HepG2 cells. Future studies are needed in this occupational setting to implement more focused risk management measures.


Subject(s)
COVID-19 , Microbiota , Aspergillus , Azoles , Cemeteries , Dust/analysis , Portugal , SARS-CoV-2
10.
Toxins (Basel) ; 14(4)2022 03 27.
Article in English | MEDLINE | ID: covidwho-1834904

ABSTRACT

Animal feed (including forage and silage) can be contaminated with mycotoxins. Here, 200 maize silage samples from around China were collected in 2019 and analyzed for regulated mycotoxins, masked mycotoxins (deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, and deoxynivalenol-3-glucoside), and emerging mycotoxins (beauvericin, enniatins, moniliformin, and alternariol). Deoxynivalenol and zearalenone were detected in 99.5% and 79.5% of the samples, respectively. Other regulated mycotoxins were detected in fewer samples. The highest deoxynivalenol and zearalenone concentrations were 3600 and 830 µg/kg, respectively. The most commonly detected masked mycotoxin was 15-acetyldeoxynivalenol, which was detected in 68.5% of the samples and had median and maximum concentrations of 61.3 and 410 µg/kg, respectively. The emerging mycotoxins beauvericin, alternariol, enniatin A, enniatin B1, and moniliformin were detected in 99.5%, 85%, 80.5%, 72.5%, and 44.5%, respectively, of the samples but at low concentrations (medians <25 µg/kg). The samples tended to contain multiple mycotoxins, e.g., the correlation coefficients for the relationships between the concentrations of beauvericin and deoxynivalenol, deoxynivalenol and zearalenone, and zearalenone and beauvericin were 1.0, 0.995, and 0.995, respectively. The results indicated that there needs to be more awareness of the presence of one or more masked and emerging mycotoxins in maize silage in China.


Subject(s)
Mycotoxins , Zearalenone , Animal Feed , Animals , Food Contamination/analysis , Mycotoxins/analysis , Silage/analysis , Zea mays , Zearalenone/analysis
11.
J Environ Manage ; 314: 115086, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1804523

ABSTRACT

Previous studies anticipated that microorganisms and their metabolites in waste will increase as a consequence of a decreased collection frequency and due to differences in what kind of waste is bagged before collection leading to an increased exposure of workers handling the waste. This study aim was to investigate the microbial contamination present in the waste collection trucks (WCT) and in the support facilities (waste collection station - WCS). It was applied a multi-approach protocol using active (air sampling by impingement and impaction) and passive (surface swabs, electrostatic dust cloths and settled dust) sampling methods. The screening of azole-resistance, the investigation of mycotoxins and the assessment of the elicited biological responses in vitro were also carried out aiming recognizing the possible health effects of waste collection drivers. SARS-CoV-2 detection was also performed. In WCS only air samples had contamination in all the four sampling sites (canteen, operational removal core, operational removal center, and administrative service). Among all the analyzed matrices from the WCT a higher percentage of total bacterial counts and Gram-was detected in swabs (66.93%; 99.36%). In WCS the most common species were Penicillium sp. (43.98%) and Cladosporium sp. (24.68%), while on WCT Aspergillus sp. (4.18%) was also one of the most found. In the azole resistance screening Aspergillus genera was not observed in the azole-supplemented media. SARS-CoV-2 was not detected in any of the environmental samples collected, but Aspergillus section Fumigati was detected in 5 samples. Mycotoxins were not detected in EDC from WCS, while in WCT they were detected in filters (N = 1) and in settled dust samples (N = 16). In conclusion, our study reveals that a comprehensive sampling approach using active and passive sampling (e.g. settled dust sampling for a representative mycotoxin evaluation) and combined analytic methods (i.e., culture-based and molecular) is an important asset in microbial exposure assessments. Concerning the waste collection exposure scenario, the results of this study unveiled a complex exposure, particularly to fungi and their metabolites. Aspergillus section Fumigati highlight the significance of targeting this section in the waste management industry as an indicator of occupational health risk.


Subject(s)
COVID-19 , Mycotoxins , Occupational Exposure , Aspergillus , Azoles , Dust/analysis , Environmental Monitoring/methods , Fungi , Humans , Mycotoxins/analysis , Portugal , SARS-CoV-2
12.
Separations ; 9(2):53, 2022.
Article in English | ProQuest Central | ID: covidwho-1715648

ABSTRACT

The safety of the food we consume has a direct impact on individual and population health and affects the economic growth of the region where food safety is practised and enhanced. The central goal of the European Commission’s Food Safety policy is to ensure a high level of protection of human health covering the whole supply chain. In recent years, great attention has been paid to food testing and the application of metrological tools to support food safety. The global food market and national and international food safety regulations have created a huge demand for the measurement traceability and comparability of analytical results that are independent of time or space boundaries. This review provides an overview of the European food safety policy and regulation, with a focus on the measurement-related elements of the European Union (EU) food law. It also highlights how the application of analytical techniques, with particular reference to separation approaches, and metrological tools can ensure the control of certain contaminants that nowadays represent the main challenges for food safety (e.g., mycotoxins, nanoparticles, emerging and process contaminants). METROFOOD-RI-Infrastructure for promoting metrology in food and nutrition is therefore described in this context. This European research infrastructure has been developed and is being implemented in the frame of the European Strategy Forum on Research Infrastructures (ESFRI) to support metrology in food and nutrition and establish a strategy allowing reliable and comparable analytical measurements in food across the entire process line, from primary producers to consumers, and making data findable, accessible, interoperable, and reusable (FAIR).

13.
World Mycotoxin Journal ; 15(1):1-2, 2022.
Article in English | ProQuest Central | ID: covidwho-1708658

ABSTRACT

First and foremost, let me wish you a healthy, lucky and prosperous 2022! Let us hope that this year brings a change for the better, as more than five million human lives were lost due to COVID-19 already (Adam, 2022). While the pandemic continues to affect our daily life more than we would have ever thought, research must continue and maybe it is more important than ever. So even during difficult times, some great scientific achievements were made, and that includes mycotoxins.

14.
Journal of Biological Research (Italy) ; 94(2):84-86, 2021.
Article in English | Scopus | ID: covidwho-1674949

ABSTRACT

COVID-19, known as the “novel coronavirus disease 2019”, is a respiratory illness, and the causative pathogen is officially named as Sars-CoV-2, whose epidemic has spread rapidly worldwide. Thus, human-to-human transmission has reduced as people's attention to health has increased and precautionary measures have been implemented. It is known that the virus can survive on infected surfaces and hands for hours or days. It is possible to get infected by touching the contaminated surface of food packaging by customers in the grocery and then touching their own mouth, nose, or eyes. Thus, the public supposes that touching food or food packing by salesmen and buyers in the grocery can transmit the virus to the customers. Therefore, the World Health Organization encourages people to wash their hands regularly and disinfect areas where the virus can survive, such as metal and plastic surfaces. However, overwashing can cause disadvantages such as moisture penetration into food packages and increased water activity in food, which provides the conditions for fungi to grow and cause spoilage in food. Accordingly, this phenomenon would have shown significant negative effects on public health as the post-pandemic phase of COVID-19. The coronavirus has had a significant impact on people's behavior in the food chain, washing and disinfecting food in these critical situations. People also quickly changed the way they bought and procured food from supermarkets to ensure food safety and eradicate the virus. Use of substances/disinfectants such as Sodium hypochlorite reduce COVID-19 from surfaces and objects or reduce viral particles from surfaces and objects. Washing and disinfecting food packaging may cause damage to products thereby reducing their shelf life and utilization. Therefore, health experts report public awareness of hands and disinfect surfaces regularly to eliminate the virus. It is also recommended to wash and disinfect hands and disinfect surfaces. © 2021 the Author(s), Licensee PAGEPress, Italy. All Rights Reserved.

15.
Toxins (Basel) ; 13(10)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1481004

ABSTRACT

Despite the awareness that work in the sewage treatment plant is associated with biological hazards, they have not been fully recognised so far. The research aims to comprehensively evaluate microbiological and toxicological hazards in the air and settled dust in workstations in a sewage treatment plant. The number of microorganisms in the air and settled dust was determined using the culture method and the diversity was evaluated using high-throughput sequencing. Endotoxin concentration was assessed with GC-MS (gas chromatography-mass spectrometry) while secondary metabolites with LC-MS/MS (liquid chromatography coupled to tandem mass spectrometry). Moreover, cytotoxicity of settled dust against a human lung epithelial lung cell line was determined with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and UHPLC-Q-ToF-UHRMS (ultra-high-performance liquid chromatography-quadrupole time-of-flight ultrahigh-resolution mass spectrometry) analysis was performed to determine the source of cytotoxicity. The total dust concentration in the sewage treatment plant was low and ranged from 0.030 mg m-3 to 0.044 mg m-3. The highest microbiological contamination was observed in sludge thickening building and screenings storage. Three secondary metabolites were detected in the air and sixteen in the settled dust. They were dominated by compounds typical of lichen and plants and Aspergillus, Penicillium and Fusarium genera mould. The settled dust from the sludge thickening building revealed high cytotoxicity to human lung epithelial cells A-549 (IC50 = 6.98 after 72 h). This effect can be attributed to a biocidal compound-didecyldimethylammonium chloride (DDAC-C10) and seven toxic compounds: 4-hydroxynonenal, carbofuran, cerulenin, diethylphosphate, fenpropimorph, naphthalene and onchidal. The presence of DDAC-C10 and other biocidal substances in the sewage treatment plant environment may bring negative results for biological sewage treatment and the natural environment in the future and contribute to microorganisms' increasing antibiotics resistance. Therefore, the concentration of antibiotics, pesticides and disinfectants in sewage treatment plant workstations should be monitored.


Subject(s)
Aerosols/analysis , Dust/analysis , Occupational Exposure/analysis , Waste Disposal, Fluid , Aerosols/toxicity , Air Microbiology , Cell Line , Disinfectants/analysis , Endotoxins/analysis , Environmental Monitoring , Humans , Sewage/chemistry , Sewage/microbiology , Water Purification
16.
Int J Environ Res Public Health ; 18(19)2021 09 30.
Article in English | MEDLINE | ID: covidwho-1463652

ABSTRACT

Aside from specific environmental conditions, poor agricultural practices contribute to mold and thus the mycotoxin contamination of crops. This study investigated Bangladeshi farming households' (i) awareness of and experience with mold contamination of food crops; (ii) knowledge and awareness of the timing, causes, and consequences of mold and mycotoxin contamination; and (iii) knowledge of the recommended agricultural practices for controlling and preventing mold contamination of food crops. A survey was conducted with 1280 households in rural areas of Habiganj district, Bangladesh. Basic descriptive statistics were calculated, and mixed-effects linear regression analyses were performed to examine associations between household characteristics and overall knowledge scores. The awareness of mold contamination of food crops was very high (99%; 95% CI: 98-100%) and a shared experience among households (85%; 95% CI: 80-88%). Yet, the majority (80%; 95% CI: 76-84%) demonstrated a low level of knowledge of the timing, causes, and preventive practices regarding mold contamination of crops. Knowledge scores were similar over demographic groups and better for households with more arable land. The findings suggest a generally insufficient knowledge of the conditions that favor mold contamination and the measures for preventing mold contamination of food crops. These findings underline the need for tailored interventions to promote good agricultural practices and reduce mold contamination of food crops.


Subject(s)
Agriculture , Family Characteristics , Bangladesh , Crops, Agricultural , Cross-Sectional Studies , Food Contamination , Humans , Rural Population
17.
Medicina (Kaunas) ; 57(3)2021 Mar 05.
Article in English | MEDLINE | ID: covidwho-1215425

ABSTRACT

Background: One Health is a comprehensive and multisectoral approach to assess and examine the health of animals, humans and the environment. However, while the One Health approach gains increasing momentum, its practical application meets hindrances. This paper investigates the environmental pillar of the One Health approach, using two case studies to highlight the integration of environmental considerations. The first case study pertains to the Danish monitoring and surveillance programme for antimicrobial resistance, DANMAP. The second case illustrates the occurrence of aflatoxin M1 (AFM1) in milk in dairy-producing ruminants in Italian regions. Method: A scientific literature search was conducted in PubMed and Web of Science to locate articles informing the two cases. Grey literature was gathered to describe the cases as well as their contexts. Results: 19 articles and 10 reports were reviewed and informed the two cases. The cases show how the environmental component influences the apparent impacts for human and animal health. The DANMAP highlights the two approaches One Health and farm to fork. The literature provides information on the comprehensiveness of the DANMAP, but highlights some shortcomings in terms of environmental considerations. The AFM1 case, the milk metabolite of the carcinogenic mycotoxin aflatoxin B1, shows that dairy products are heavily impacted by changes of the climate as well as by economic drivers. Conclusions: The two cases show that environmental conditions directly influence the onset and diffusion of hazardous factors. Climate change, treatment of soils, water and standards in slaughterhouses as well as farms can have a great impact on the health of animals, humans and the environment. Hence, it is important to include environmental considerations, for example, via engaging environmental experts and sharing data. Further case studies will help to better define the roles of environment in One Health scenarios.


Subject(s)
One Health , Aflatoxin M1/analysis , Animals , Food Contamination/analysis , Humans , Milk
SELECTION OF CITATIONS
SEARCH DETAIL